Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 114(3): 44, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630172

RESUMEN

Albino tea cultivars have high economic value because their young leaves contain enhanced free amino acids that improve the quality and properties of tea. Zhonghuang 1 (ZH1) and Zhonghuang 2 (ZH2) are two such cultivars widely planted in China; however, the environmental factors and molecular mechanisms regulating their yellow-leaf phenotype remain unclear. In this study, we demonstrated that both ZH1 and ZH2 are light- and temperature-sensitive. Under natural sunlight and low-temperature conditions, their young shoots were yellow with decreased chlorophyll and an abnormal chloroplast ultrastructure. Conversely, young shoots were green with increased chlorophyll and a normal chloroplast ultrastructure under shading and high-temperature conditions. RNA-seq analysis was performed for high light and low light conditions, and pairwise comparisons identified genes exhibiting different light responses between albino and green-leaf cultivars, including transcription factors, cytochrome P450 genes, and heat shock proteins. Weighted gene coexpression network analyses of RNA-seq data identified the modules related to chlorophyll differences between cultivars. Genes involved in chloroplast biogenesis and development, light signaling, and JA biosynthesis and signaling were typically downregulated in albino cultivars, accompanied by a decrease in JA-ILE content in ZH2 during the albino period. Furthermore, we identified the hub genes that may regulate the yellow-leaf phenotype of ZH1 and ZH2, including CsGDC1, CsALB4, CsGUN4, and a TPR gene (TEA010575.1), which were related to chloroplast biogenesis. This study provides new insights into the molecular mechanisms underlying leaf color formation in albino tea cultivars.


Asunto(s)
Albinismo , Perfilación de la Expresión Génica , Temperatura , Frío , Clorofila
2.
Front Plant Sci ; 14: 1263606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936941

RESUMEN

The sprouting process of tea buds is an essential determinant of tea quality and taste, thus profoundly impacting the tea industry. Buds spring sprouting is also a crucial biological process adapting to external environment for tea plants and regulated by complex transcriptional and metabolic networks. This study aimed to investigate the molecular basis of bud sprouting in tea plants firstly based on the comparisons of metabolic and transcriptional profiles of buds at different developmental stages. Results notably highlighted several essential processes involved in bud sprouting regulation, including the interaction of plant hormones, glucose metabolism, and reactive oxygen species scavenging. Particularly prior to bud sprouting, the accumulation of soluble sugar reserves and moderate oxidative stress may have served as crucial components facilitating the transition from dormancy to active growth in buds. Following the onset of sprouting, zeatin served as the central component in a multifaceted regulatory mechanism of plant hormones that activates a range of growth-related factors, ultimately leading to the promotion of bud growth. This process was accompanied by significant carbohydrate consumption. Moreover, related key genes and metabolites were further verified during the entire overwintering bud development or sprouting processes. A schematic diagram involving the regulatory mechanism of bud sprouting was ultimately proposed, which provides fundamental insights into the complex interactions involved in tea buds.

3.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373207

RESUMEN

Cold stress is a major environmental factor that adversely affects the growth and productivity of tea plants. Upon cold stress, tea plants accumulate multiple metabolites, including ascorbic acid. However, the role of ascorbic acid in the cold stress response of tea plants is not well understood. Here, we report that exogenous ascorbic acid treatment improves the cold tolerance of tea plants. We show that ascorbic acid treatment reduces lipid peroxidation and increases the Fv/Fm of tea plants under cold stress. Transcriptome analysis indicates that ascorbic acid treatment down-regulates the expression of ascorbic acid biosynthesis genes and ROS-scavenging-related genes, while modulating the expression of cell wall remodeling-related genes. Our findings suggest that ascorbic acid treatment negatively regulates the ROS-scavenging system to maintain ROS homeostasis in the cold stress response of tea plants and that ascorbic acid's protective role in minimizing the harmful effects of cold stress on tea plants may occur through cell wall remodeling. Ascorbic acid can be used as a potential agent to increase the cold tolerance of tea plants with no pesticide residual concerns in tea.


Asunto(s)
Ácido Ascórbico , Camellia sinensis , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Camellia sinensis/metabolismo , Perfilación de la Expresión Génica , Té/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Frío
4.
Integr Zool ; 17(6): 1095-1105, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34496146

RESUMEN

Understanding how species' ecological niches adapt to environmental changes through time is critical for predicting the effect of future global change on endangered species. Yet few studies have incorporated knowledge of past niche shifting into the assessment of species' future fate in a changing world. In this study, we integrated the ecological niche dynamics into the species distribution modeling of the Asian crested ibis (Nipponia nippon) in East Asia. Specifically, we compared historical and present ecological niches of crested ibis in four-dimensional environmental space based on species occurrence and environmental data. We then employed a multi-temporal ecological niche model to estimate the potential geographical distribution of crested ibis under future climate and land-use changes. Our results show that crested ibis retained similar though not identical ecological niches over time. Compared to the historical baseline range, the current suitable habitat for crested ibis has been reduced by 39.6%. The effects of human activity outweigh those of climate change regarding the distribution of crested ibis. We conclude that the ecological niche of crested ibis was tended to be conservative, and future potentially suitable habitat may encounter northeastward and northwestward shift, and possibly expand by 18.7% referred to the historical range. The findings of our study are of clear importance for the conservation and successful reintroduction of crested ibis in East Asia.


Asunto(s)
Aves , Especies en Peligro de Extinción , Humanos , Animales , Ecosistema , Cambio Climático
5.
Plant Sci ; 304: 110735, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33568287

RESUMEN

Alternative oxidase (AOX) is a mitochondrial enzyme encoded by a small nuclear gene family, which contains the two subfamilies, AOX1 and AOX2. In the present study on watermelon (Citrullus lanatus), only one ClAOX gene, belonging to AOX2 subfamily but having a similar gene structure to AtAOX1a, was found in the watermelon genome. The expression analysis suggested that ClAOX had the constitutive expression feature of AOX2 subfamily, but was cold inducible, which is normally considered an AOX1 subfamily feature. Moreover, one single nucleotide polymorphism (SNP) in ClAOX sequence, which led to the change from Lys (N) to Asn (K) in the 96th amino acids, was found among watermelon subspecies. Ectopic expression of two ClAOX alleles in the Arabidopsis aox1a knock-out mutant indicated that ClAOXK-expressing plants had stronger cold tolerance than aox1a mutant and ClAOXN-expressing plants. Our findings suggested watermelon genome contained a single ClAOX that possessed the expression features of both AOX1 and AOX2 subfamilies. A naturally existing SNP in ClAOX differentiated the cold tolerance of transgenic Arabidopsis plants, impling a possibility this gene might be a functional marker for stress-tolerance breeding.


Asunto(s)
Citrullus/genética , Genes de Plantas/genética , Proteínas Mitocondriales/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Arabidopsis , Citrullus/enzimología , Citrullus/fisiología , Clonación Molecular , Respuesta al Choque por Frío , Genes de Plantas/fisiología , Proteínas Mitocondriales/fisiología , Oxidorreductasas/fisiología , Filogenia , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/fisiología
6.
Front Public Health ; 9: 813717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071176

RESUMEN

Tracheobronchial diverticula (TD) is a common cystic lesion that can be easily neglected; hence accurate and rapid identification is critical for later diagnosis. There is a strong need to automate this diagnostic process because traditional manual observations are time-consuming and laborious. However, most studies have only focused on the case report or listed the relationship between the disease and other physiological indicators, but a few have adopted advanced technologies such as deep learning for automated identification and diagnosis. To fill this gap, this study interpreted TD recognition as semantic segmentation and proposed a novel attention-based network for TD semantic segmentation. Since the area of TD lesion is small and similar to surrounding organs, we designed the atrous spatial pyramid pooling (ASPP) and attention mechanisms, which can efficiently complete the segmentation of TD with robust results. The proposed attention model can selectively gather features from different branches according to the amount of information they contain. Besides, to the best of our knowledge, no public research data is available yet. For efficient network training, we constructed a data set containing 218 TD and related ground truth (GT). We evaluated different models based on the proposed data set, among which the highest MIOU can reach 0.92. The experiments show that our model can outperform state-of-the-art methods, indicating that the deep learning method has great potential for TD recognition.


Asunto(s)
Divertículo , Procesamiento de Imagen Asistido por Computador , Humanos , Semántica , Tomografía Computarizada por Rayos X
7.
Sci Data ; 7(1): 344, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051443

RESUMEN

Historical as well as current species distribution data are needed to track changes in biodiversity. Species distribution data are found in a variety of sources, each of which has its own distinct bias toward certain taxa, time periods or places. We present GalliForm, a database that comprises 186687 galliform occurrence records linked to 118907 localities in Europe and Asia. Records were derived from museums, peer-reviewed and grey literature, unpublished field notes, diaries and correspondence, banding records, atlas records and online birding trip reports. We describe data collection processes, georeferencing methods and quality-control procedures. This database has underpinned several peer-reviewed studies, investigating spatial and temporal bias in biodiversity data, species' geographic range changes and local extirpation patterns. In our rapidly changing world, an understanding of long-term change in species' distributions is key to predicting future impacts of threatening processes such as land use change, over-exploitation of species and climate change. This database, its historical aspect in particular, provides a valuable source of information for further studies in macroecology and biodiversity conservation.


Asunto(s)
Distribución Animal , Bases de Datos Factuales , Galliformes , Animales , Asia , Biodiversidad , Europa (Continente) , Mapeo Geográfico
8.
Plant Cell Physiol ; 61(9): 1669-1682, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32645157

RESUMEN

Sugars Will Eventually be Exported Transporters (SWEETs) are important in plant biological processes. Expression levels of CsSWEET1a and CsSWEET17 are induced by cold acclimation (CA) and cold stress in Camellia sinensis. Here, we found that CsSWEET17 was alternatively spliced, and its exclusion (Ex) transcript was associated with the CA process. Both plasma membrane-localized CsSWEET1a and CsSWEET17 transport hexoses, but cytoplasm-localized CsSWEET17-Ex does not. These results indicate that alternative splicing may be involved in regulating the function of SWEET transporters in response to low temperature in plants. The extra C-terminal of CsSWEET17, which is not found in the tonoplast fructose transporter AtSWEET17, did not affect its plasma membrane localization but promoted its sugar transport activities. The overexpression (OE) of CsSWEET1a and CsSWEET17 genes resulted in an increased sugar uptake in Arabidopsis, affecting plant germination and growth. The leaf and seed sizes of the CsSWEET17-OE lines were significantly larger than those of the wild type. Moreover, the OE of CsSWEET1a and CsSWEET17 significantly reduced the relative electrolyte leakage levels under freezing stress. Compared with the wild type, the expression of AtCWINV genes was suppressed in both CsSWEET1a-OE and CsSWEET17-OE lines, indicating the alteration in sugar contents in the cell walls of the OE lines. Furthermore, the interaction between CsSWEET1a and CsSWEET17 was confirmed using yeast two-hybrid and bimolecular fluorescence complementation assays. We showed that CsSWEET1a and CsSWEET17 form homo-/heterodimers in the plasma membrane and mediate the partitioning of sugars between the cytoplasm and the apoplast, thereby regulating plant growth and freezing tolerance.


Asunto(s)
Camellia sinensis/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Monosacáridos/fisiología , Proteínas de Plantas/fisiología , Empalme Alternativo , Arabidopsis , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/fisiología , Respuesta al Choque por Frío , Congelación , Germinación , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , beta-Fructofuranosidasa/metabolismo
9.
Plant Physiol Biochem ; 154: 195-203, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32563043

RESUMEN

Calcineurin B-like (CBL) proteins, a class of Ca2+-binding proteins, play vital roles in calcium signal transduction by interacting specifically with CBL-interacting protein kinases (CIPKs), and these two gene families and their interacting complexes are involved in regulating plant responses to various environmental stimuli. In the present study, eight CBL and 25 CIPK genes were identified in tea plant and divided into four and five subfamilies, respectively. Analysis of the expression of these genes in response to abiotic stresses (mature leaves treated with cold, salinity, and PEG and young shoots treated with cold) revealed that CsCBL1/3/5 and CsCIPK1/4/5/6a/7/8/10b/10c/12/14a/19/23a/24 could be induced by at least two stresses. Under cold stress, CsCBL9 and CsCIPK4/6a/6b/7/11/14b/19/20 were upregulated in both mature leaves and young shoots, CsCBL1/3/5 and CsCIPK1/8/10a/10b/10c/12/14a/23a/24 were induced only in mature leaves, and CsCIPK5/25 were induced only in young shoots. Yeast two-hybrid analysis showed that CsCBL1 could interact with CsCIPK1/10b/12 but not with CsCIPK6a/7/11/14b/20. CsCBL9 was found to interact with CsCIPK1/10b/12/14b but not with CsCIPK6a/7/11/20. These results suggest divergent responses to cold stress regulated by CBL-CIPK complexes between tea plant and Arabidopsis, as well as between mature leaves and young shoots in tea plant. A model of Ca2+-CsCBL-CsCIPK module-mediated abiotic stress signaling in tea plant is proposed.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Frío , Proteínas Quinasas/fisiología , Transducción de Señal , Estrés Fisiológico , Té/fisiología , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/fisiología
10.
Plant Cell Rep ; 39(4): 553-565, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32060604

RESUMEN

KEY MESSAGE: Overexpression of the tea plant gene CsbZIP18 in Arabidopsis impaired freezing tolerance, and CsbZIP18 is a negative regulator of ABA signaling and cold stress. Basic region/leucine zipper (bZIP) transcription factors play important roles in the abscisic acid (ABA) signaling pathway and abiotic stress response in plants. However, few bZIP transcription factors have been functionally characterized in tea plants (Camellia sinensis). In this study, a bZIP transcription factor, CsbZIP18, was found to be strongly induced by natural cold acclimation, and the expression level of CsbZIP18 was lower in cold-resistant cultivars than in cold-susceptible cultivars. Compared with wild-type (WT) plants, Arabidopsis plants constitutively overexpressing CsbZIP18 exhibited decreased sensitivity to ABA, increased levels of relative electrolyte leakage (REL) and reduced values of maximal quantum efficiency of photosystem II (Fv/Fm) under freezing conditions. The expression of ABA homeostasis- and signal transduction-related genes and abiotic stress-inducible genes, such as RD22, RD26 and RAB18, was suppressed in overexpression lines under freezing conditions. However, there was no significant change in the expression of genes involved in the C-repeat binding factor (CBF)-mediated ABA-independent pathway between WT and CsbZIP18 overexpression plants. These results indicate that CsbZIP18 is a negative regulator of freezing tolerance via an ABA-dependent pathway.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Camellia sinensis/genética , Respuesta al Choque por Frío , Congelación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Aclimatación/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Camellia sinensis/metabolismo , Respuesta al Choque por Frío/genética , Regulación de la Expresión Génica de las Plantas/genética , Complejo de Proteína del Fotosistema II/metabolismo , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteostasis/efectos de los fármacos , Proteostasis/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
11.
Genomics ; 112(2): 1351-1362, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31408701

RESUMEN

Plants often use nucleotide-binding leucine-rich repeats (NLRs) to recognize specific virulence proteins and activate the hypersensitive response thereby defending against invaders. However, data on NLRs and the resistance mechanism of NLR protein mediation in tea plant are extremely limited. In this study, 400 and 303 CsNLRs were identified from the genomes of C. sinensis var. sinensis (CSS) and C. sinensis var. assamica (CSA), respectively. Phylogenetic analysis revealed that the numbers in CNL groups are predominant in both CSS and CSA. RNA-Seq revealed that the expression of CsNLRs is induced by Colletotrichum fructicola, cold, drought, salt stress and exogenous methyl jasmonate. The 21 CsCNLs that are highly expressed in tea plant under biotic and abiotic stresses as well as during bud dormancy and in different tissues are identified. Gene structure analysis revealed several cis-regulatory elements associated with phytohormones and light responsiveness in the promoter regions of these 21 CsCNLs.


Asunto(s)
Camellia sinensis/genética , Respuesta al Choque por Frío , Proteínas NLR/genética , Proteínas de Plantas/genética , Estrés Salino , Camellia sinensis/clasificación , Camellia sinensis/metabolismo , Resistencia a la Enfermedad , Genoma de Planta , Proteínas NLR/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
12.
Front Plant Sci ; 10: 1543, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827483

RESUMEN

The tea cultivar 'Xiaoxueya', a temperature-sensitive albino mutant, is a rare tea germplasm because of its highly enriched amino acid content and brisk flavour. In comparison with green leaf tissues of 'Xiaoxueya', albino leaves show significant deficiency in chlorophylls and carotenoids and severely disrupted chloroplasts. Furthermore, the accumulation of quality-related secondary metabolites is altered in 'Xiaoxueya' albino leaf, with significantly increased contents of total amino acids, theanine, and glutamic acid and significantly decreased contents of alkaloids, catechins, and polyphenols. To uncover the molecular mechanisms underlying albinism and quality-related constituent variation in 'Xiaoxueya' leaves, expression profiles of pivotal genes involved in the biosynthetic pathways of pigments, caffeine, theanine, and catechins were investigated by quantitative real-time PCR technology. The results revealed that suppressed expression of the chloroplast-localized 1-deoxy-D-xylulose-5-phosphate synthase genes DXS1 and DXS2 involved in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway and protochlorophyllide oxidoreductase genes POR1 and POR2 involved in the chlorophyll biosynthetic pathway is responsible for the pigment deficiency in 'Xiaoxueya' albino leaf. Additionally, the low expression of the tea caffeine synthase gene (TCS) involved in caffeine biosynthesis and the chalcone synthase genes CHS1, CHS2, and CHS3, the chalcone isomerase gene CHI, the flavonoid 3',5'-hydroxylase genes F3'5'H1 and F3'5'H2, and the anthocyanidin reductase genes ANR1 and ANR2 involved in the flavonoid pathway is related to the reduction in alkaloid and catechin levels in 'Xiaoxueya' albino leaves.

13.
Plant Physiol Biochem ; 143: 190-202, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31518850

RESUMEN

Temperature is one of the most important environmental factors limiting tea plant growth and tea production. Previously we reported that both Ca2+ and ROS signals play important roles in tea plant cold acclimation. Here, we identified 26 CsCPK transcripts, analyzed their phylogenetic and sequence characters, and detected their transcriptions to monitor Ca2+ signaling status. Tissue-specific expression profiles indicated that most CsCPK genes were constitutively expressed in tested tissues, suggesting their possible roles in development. Cold along with calcium inhibitor assays suggested that CsCPKs are important cold regulators and CsCPK30/5/4/9 maybe the key members. Moreover, LaCl3 or EGTA pre-treatment could result in impaired Ca2+ signaling and compromised cold-responding network, but higher catechins accumulation revealed their potential positive roles in cold responses. Those findings indicated that catechins and other secondary metabolites in tea plant may form an alternative cold-responding network that closely correlated with Ca2+ signaling status.


Asunto(s)
Camellia sinensis/metabolismo , Catequina/metabolismo , Proteínas Quinasas/metabolismo , Camellia sinensis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética
14.
Plant Dis ; 103(10): 2548-2558, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31432774

RESUMEN

Several Pestalotiopsis-like species cause gray blight disease in tea plants, resulting in severe tea production losses. However, systematic and comprehensive research on the diversity, geographical distribution, and pathogenicity of pathogenic species associated with tea plants in China is limited. In this study, 168 Pestalotiopsis-like isolates were obtained from diseased tea plant leaves from 13 primary tea-producing provinces and cities in China. Based on a multilocus (internal transcribed spacer, translation elongation factor 1-α, and ß-tubulin gene region) phylogenetic analysis coupled with an assessment of conidial characteristics, 20 Neopestalotiopsis unclassified isolates, seven Pestalotiopsis species, including two novel (Pestalotiopsis menhaiensis and Pestalotiopsis sichuanensis), four known (Pestalotiopsis camelliae, Pestalotiopsis chamaeropis, Pestalotiopsis kenyana, and Pestalotiopsis rhodomyrtus) and one indistinguishable species, and three Pseudopestalotiopsis species, including two known (Pseudopestalotiopsis camelliae-sinensis and Pseudopestalotiopsis chinensis) and one indistinguishable species, were identified. This study is the first to evaluate Pestalotiopsis chamaeropis on tea plants in China. The geographical distribution and pathogenicity tests showed Pseudopestalotiopsis camelliae-sinensis to be the dominant cause of gray blight of tea plants in China. In vitro antifungal assays demonstrated that theobromine not only derepressed mycelial growth of the 29 representative isolates but also increased their growth. Correlation analysis revealed a linear positive relationship between the mycelial growth rate and pathogenicity (P = 0.0148).


Asunto(s)
Ascomicetos , Biodiversidad , Camellia sinensis , Enfermedades de las Plantas , Ascomicetos/clasificación , Ascomicetos/patogenicidad , Ascomicetos/fisiología , Camellia sinensis/microbiología , China , Filogenia , Enfermedades de las Plantas/microbiología , Especificidad de la Especie , Virulencia
15.
Oncol Lett ; 16(5): 6095-6099, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30405755

RESUMEN

The present study aimed to observe the effect of the Notch1 signaling inhibitor γ-secretase inhibitor II (GSI II) on the growth and differentiation of tumor cells. The tumor cell line U87 was grown in serum-free media, and cell growth was evaluated using immunofluorescence. Single-cell wall-adherent growing conditions were prepared, GSI II was added, and the differentiation and growth of single tumor cells was evaluated. Immunofluorescence demonstrated positive results for the expression of Nestin and cluster of differentiation 133. The cell proliferation rate was reduced following the addition of GSI II (P<0.05). GSI II may significantly inhibit the proliferation and differentiation of U87 tumor stem cells.

16.
Planta ; 248(5): 1231-1247, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30097722

RESUMEN

MAIN CONCLUSION: Four typical ALTERNATIVE OXIDASE genes have been identified in tea plants, and their sequence features and gene expression profiles have provided useful information for further studies on function and regulation. Alternative oxidase (AOX) is a terminal oxidase located in the respiratory electron transport chain. AOX catalyzes the oxidation of quinol and the reduction of oxygen into water. In this study, a genome-wide search and subsequent DNA cloning were performed to identify and characterize AOX genes in tea plant (Camellia sinensis (L.) O. Kuntze cv. Longjing43). Our results showed that tea plant possesses four AOX genes, i.e., CsAOX1a, CsAOX1d, CsAOX2a and CsAOX2b. Gene structure and protein sequence analyses revealed that all CsAOXs share a four-exon/three-intron structure with highly conserved regions and amino acid residues, which are necessary for AOX secondary structures, catalytic activities and post-translational regulations. All CsAOX were shown to localize in mitochondria using the green fluorescent protein (GFP)-targeting assay. Both CsAOX1a and CsAOX1d were induced by cold, salt and drought stresses, and with different expression patterns in young and mature leaves. Reactive oxygen species (ROS) accumulated strongly after 72 and 96 h cold treatments in both young and mature leaves, while the polyphenol and total catechin decreased significantly only in mature leaves. In comparison to AtAOX1a in Arabidopsis thaliana, CsAOX1a lost almost all of the stress-responsive cis-acting regulatory elements in its promoter region (1500 bp upstream), but possesses a flavonoid biosynthesis-related MBSII cis-acting regulatory element. These results suggest a link between CsAOX1a function and the metabolism of some secondary metabolites in tea plant. Our studies provide a basis for the further elucidation of the biological function and regulation of the AOX pathway in tea plants.


Asunto(s)
Camellia sinensis/genética , Genoma de Planta/genética , Proteínas Mitocondriales/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Camellia sinensis/enzimología , Camellia sinensis/fisiología , Clonación Molecular , Secuencia Conservada/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Proteínas Mitocondriales/fisiología , Oxidorreductasas/fisiología , Filogenia , Proteínas de Plantas/fisiología , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Estrés Fisiológico , Transcriptoma
17.
Hortic Res ; 5: 18, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619229

RESUMEN

Anthracnose causes severe losses of tea production in China. Although genes and biological processes involved in anthracnose resistance have been reported in other plants, the molecular response to anthracnose in tea plant is unknown. We used the susceptible tea cultivar Longjing 43 and the resistant cultivar Zhongcha 108 as materials and compared transcriptome changes in the leaves of both cultivars following Colletotrichum fructicola inoculation. In all, 9015 and 8624 genes were differentially expressed between the resistant and susceptible cultivars and their controls (0 h), respectively. In both cultivars, the differentially expressed genes (DEGs) were enriched in 215 pathways, including responses to sugar metabolism, phytohormones, reactive oxygen species (ROS), biotic stimuli and signalling, transmembrane transporter activity, protease activity and signalling receptor activity, but DEG expression levels were higher in Zhongcha 108 than in Longjing 43. Moreover, functional enrichment analysis of the DEGs showed that hydrogen peroxide (H2O2) metabolism, cell death, secondary metabolism, and carbohydrate metabolism are involved in the defence of Zhongcha 108, and 88 key genes were identified. Protein-protein interaction (PPI) network demonstrated that putative mitogen-activated protein kinase (MAPK) cascades are activated by resistance (R) genes and mediate downstream defence responses. Histochemical analysis subsequently validated the strong hypersensitive response (HR) and H2O2 accumulation that occurred around the hyphal infection sites in Zhongcha 108. Overall, our results indicate that the HR and H2O2 are critical mechanisms in tea plant defence against anthracnose and may be activated by R genes via MAPK cascades.

18.
J Plant Physiol ; 224-225: 144-155, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29642051

RESUMEN

The tea plant originated in tropical and subtropical regions and experiences considerable challenges during cold winters and late spring frosts. After short-term chilling stress, young leaves of tea plants exhibit browning, a significant increase in electrolyte leakage and a marked decrease in the maximal photochemical efficiency of photosystem II (Fv/Fm) compared with mature leaves. To identify the mechanisms underlying the different chilling tolerance between young and mature leaves of the tea plant, we used Illumina RNA-Seq technology to analyse the transcript expression profiles of young and mature leaves exposed to temperatures of 20 °C, 4 °C, and 0 °C for 4 h. A total of 45.70-72.93 million RNA-Seq raw reads were obtained and then de novo assembled into 228,864 unigenes with an average length of 601 bp and an N50 of 867 bp. In addition, the differentially expressed unigenes were identified via Venn diagram analyses for paired comparisons of young and mature leaves. Functional classifications based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the up-regulated differentially expressed genes were predominantly related to the cellular component terms of chloroplasts and cell membranes, the biological process term of oxidation-reduction process as well as the pathway terms of glutathione metabolism and photosynthesis, suggesting that these components and pathways may contribute to the cold hardiness of mature leaves. Conversely, the inhibited expression of genes related to cell membranes, carotenoid metabolism, photosynthesis, and ROS detoxification in young leaves under cold conditions might lead to the disintegration of cell membranes and oxidative damage to the photosynthetic apparatus. Further quantitative real-time PCR testing validated the reliability of our RNA-Seq results. This work provides valuable information for understanding the mechanisms underlying the cold susceptibility of young tea plant leaves and for breeding tea cultivars with superior frost resistance via the genetic manipulation of antioxidant enzymes.


Asunto(s)
Camellia sinensis/fisiología , Frío , Proteínas de Plantas/genética , Transcripción Genética , Transcriptoma , Camellia sinensis/genética , Electrólitos/metabolismo , Fenotipo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo
19.
Plant Mol Biol ; 96(6): 577-592, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29616437

RESUMEN

KEY MESSAGE: Thirteen SWEET transporters were identified in Camellia sinensis and the cold-suppression gene CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. The sugars will eventually be exported transporters (SWEET) family of sugar transporters in plants is a recently identified protein family of sugar uniporters that contain seven transmembrane helices harbouring two MtN3 motifs. SWEETs play important roles in various biological processes, including plant responses to environmental stimuli. In this study, 13 SWEET transporters were identified in Camellia sinensis and were divided into four clades. Transcript abundances of CsSWEET genes were detected in various tissues. CsSWEET1a/1b/2a/2b/2c/3/9b/16/17 were expressed in all of the selected tissues, whereas the expression of CsSWEET5/7/9a/15 was not detected in some tissues, including those of mature leaves. Expression analysis of nine CsSWEET genes in leaves in response to abiotic stresses, natural cold acclimation and Colletotrichum camelliae infection revealed that eight CsSWEET genes responded to abiotic stress, while CsSWEET3 responded to C. camelliae infection. Functional analysis of 13 CsSWEET activities in yeast revealed that CsSWEET1a/1b/7/17 exhibit transport activity for glucose analogues and other types of hexose molecules. Further characterization of the cold-suppression gene CsSWEET16 revealed that this gene is localized in the vacuolar membrane. CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. Together, these findings demonstrate that CsSWEET genes play important roles in the response to abiotic and biotic stresses in tea plants and provide insights into the characteristics of SWEET genes in tea plants, which could serve as the basis for further functional identification of such genes.


Asunto(s)
Arabidopsis/genética , Camellia sinensis/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Aclimatación/genética , Secuencia de Aminoácidos , Transporte Biológico/genética , Frío , Colletotrichum/fisiología , Hexosas/metabolismo , Proteínas de Transporte de Membrana/clasificación , Familia de Multigenes/genética , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/clasificación , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido
20.
PeerJ ; 4: e2556, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27781161

RESUMEN

We analyzed the synchronous relationship between forest cover and species distribution to explain the contraction in the distribution range of the brown eared-pheasant (Crossoptilon mantchuricum) in China. Historical resources can provide effective records for reconstructing long-term distribution dynamics. The brown eared-pheasant's historical distribution from 25 to 1947 CE, which included the three provinces of Shaanxi, Shanxi, and Hebei based on this species' habitat selection criteria, the history of the forests, ancient climate change records, and fossil data. The current species distribution covers Shaanxi, Shanxi, and Hebei provinces, as well as Beijing city, while Shanxi remains the center of the distribution area. MaxEnt model indicated that the suitable conditions of the brown eared-pheasant had retreated to the western regions of Shanxi and that the historical distribution area had reduced synchronously with the disappearance of local forest cover in Shanxi. We built a correlative relationship between the presence/absence of brown eared-pheasants and forest coverage and found that forest coverage in the north, northeast, central, and southeast areas of the Shanxi province were all less than 10% in 1911. Wild brown eared-pheasants are stable in the Luliang Mountains, where forest coverage reached 13.2% in 2000. Consequently, we concluded that the distribution of this species is primarily determined by vegetation conditions and that forest cover was the most significant determining factor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...